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How do biological systems learn
continuously throughout their life-
spans, adapting to change while
retaining old knowledge, and how
can these principles be applied to
artificial learning systems? In this
Forum article we outline challenges
and strategies of ‘lifelong learning’
in biological and artificial systems,
and argue that a collaborative study
of each system’s failure modes can
benefit both.

The problem of lifelong learning

Humans and other biological learning sys-
tems display the astounding ability to con-
tinually accumulate knowledge over their
entire lifetime. One remarkable feature of
this form of learning is that even though ex-
periences over a lifetime are sequentially
sampled from changing (nonstationary) en-
vironments, organisms can adapt quickly
to changes while retaining old knowledge.
This contrasts with many contemporary
machine-learning algorithms, which rely
on independent, identically distributed
samples from a stationary distribution to
learn successfully, often failing to learn
anew or forgetting old knowledge cata-
strophically when presented with incre-
mental data from changing distributions
[1]. What computational principles support
effective learning and long-term knowledge
retention in the face of change? The mod-
ern machine-learning subfields of continual
and lifelong learning have taken inspiration
from biological systems at multiple levels

of abstraction to tackle this problem [1,2],
and aim to rival human-level performance.
The goal of such approaches is to learn
continuously in nonstationary data regimes,
avoid catastrophic forgetting and running
out of capacity, and — more ambitiously —
enable knowledge transfer and generali-
zation between past and future tasks to
improve learning efficiency.

Learning strategies observed in
biological agents

Given the ever-changing natural world, it
is perhaps no surprise that humans and
other biological systems have evolved
multiple mechanisms for lifelong learning.
These include synaptic plasticity rules
that protect previously learned associa-
tions, mechanisms that create new neural
structures or representations when drastic
changes are encountered, built-in neuro-
modulatory drives for persistent explora-
tion, and architectural schemes that use
multiple interacting learning and memory
systems to balance generalization and
segregation [2].

At a high level, these mechanisms can all
be understood as ‘inductive biases’, or
assumptions that learners bring to a prob-
lem, which shape learning and restrict the
space of solutions. In particular, these
mechanisms all embody the assumption
that environments may not be stationary
(hence, e.g., the need to continuously ex-
plore new solutions), but may nevertheless
have modular and/or recurring structure
(i.e., changes may indicate that a new
task needs to be learned, but old knowl-
edge should be retained as it may be use-
ful for old tasks that resurface, or for
generalizing to new problems that are
similar).

One useful framework that has helped
translate several of these mechanisms
into a common language is the contextual
or latent-cause framework. Here, the learner
is assumed to constantly segment its ex-
perience into ‘contexts’, ‘tasks’, or ‘latent
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causes’, discovering new contexts as well
as inferring the recurring presence of old
ones, and learning separate associations
for each [3]. This reformulates the learning
problem from one that involves using
experiences to learn or track a fixed set of
static or dynamic associative parameters
(the typical assumption underlying Bayesian,
gradient-based, or reinforcement-learning
formulations) (Figure 1A,B) to one that
additionally involves partitioning experi-
ences into (an unknown number of) con-
texts, each with their own set of learned
parameters (Figure 1C).

Given an inferred partition, experiences
can be used to selectively modify context-
specific parameters, while these parame-
ters are protected from erasure outside
the relevant context. This means that new
knowledge can be acquired quickly, and
at the same time, old knowledge can be
remembered and reused long into the
future, if and when similar contexts are en-
countered (unlike, for example, standard
reinforcement learning, where fast learning
implies fast forgetting). Bayesian nonpara-
metric models are a popular choice for the
partitioning process since they allow
flexible but judicious expansion of learnt la-
tent structure. Such models avoid running
out of capacity by using priors (such as
the Chinese Restaurant Process prior)
that constrain the number of latent causes
inferred, a principle of parsimony that
reflects humans’ and animals’ inductive
biases across many different domains [3]
and naturally emerges from efficient coding
objectives [4].

The latent-cause framework has been
used to successfully account for previously
puzzling features of learning in humans and
animals, such as their ability to learn and
remember multiple conflicting beliefs or
behavioral policies, and enhanced learning
speeds and accuracy when encounter-
ing successive new tasks or previously
learned ones [3,5]. Neurally, this framework
has been used to understand synaptic
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Figure 1. Three commonly encountered online learning settings. (A) Static setting, the standard for most optimization problems. A stationary environment (variously
referred to as a task, context, or latent cause) with a fixed set of learnable parameters produces an independently and identically distributed set of samples, even when
encountered sequentially. lllustrated is a grocery store environment ¢, with a cookie reward in one location, where the learnable parameters 6, determine the optimal
behavioral policy required to arrive at the cookie (shortest path from entrance, denoted in the image); the learner’s task is to acquire an estimate of these parameters
that converges to the true values. (B) Dynamic setting with coupled learning and forgetting. A nonstationary environment ¢, with a single set of parameters 6; that
undergoes (possibly unsignaled) changes. In this scenario, the cookie’s location changes every so often (illustrated: different batches of episodes), with only its
current location relevant for optimal performance. The learner must therefore track only the current value of the parameters, and may forget previous values since
they are no longer relevant. (C) Continual learning setting, requiring learning without forgetting. A nonstationary environment with recurrent structure. Here, past
contexts may reappear in the future, or be relevant to future generalization. This requires the learner to partition their experiences into the appropriate contexts c;,
entertain the possibility of new contexts appearing, and maintain context-specific parameters 6; in memory, implying a clustering problem with an unknown
number of clusters. Failure to segregate learning in this way will result in forgetting of old knowledge, necessitating relearning if the old context resurfaces.
Appropriately clustering the data can improve learning efficiency, and allows knowledge transfer between past and future tasks. Depicted is a case where the
cookie has been moved due to construction in the cookie aisle (a second latent cause c5). By protecting learning acquired in ¢+, the learner can instantly reuse it

when the construction is over.

processes of memory modification and
protection [6], circuit-level gating of learning
updates by latent-cause representations in
the prefrontal cortex and/or hippocampus
[3], and global, long-term interactions be-
tween learning and episodic memory in
replay, consolidation, and retrieval [7].

Biologically inspired strategies in
artificial agents

To engineer artificial agents capable of
continual learning, artificial intelligence
research has taken inspiration from bio-
logical inductive biases at several levels.
Particularly within deep learning, these
efforts roughly fall under four approaches:
gradient-based approaches inspired by
synaptic plasticity rules, modular archi-
tectures that add capacity when new
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tasks are encountered, memory-based
approaches that store and/or replay
past experiences, and meta-learning
approaches that attempt to learn use-
ful inductive biases by optimizing an
evolution-like ‘outer loop’ [1,2]. Many
of these approaches leverage a sparse,
modular, latent causal structure, with
some solutions explicitly formulating
this structure in probabilistic terms [8].
In particular, approaches that eschew
expensive storage of past experiences
in favor of a more compressed solution
in the form of discrete, low-dimensional
‘anchors’ representing abstractions of
past tasks [1] closely resemble latent-
cause models of context-bound epi-
sodic memory and cortico-hippocampal
interactions.

Failure modes of lifelong-learning
agents

As with all inductive biases, those that
allow for lifelong learning in changing natu-
ral environments induce particular failure
modes when their assumptions are not
met. Humans’ and animals’ naturally adap-
tive inductive biases about nonstationarity
are perhaps no more evident than in
unnaturally stationary laboratory tasks,
where such implicit assumptions may
hamper task performance, manifesting
as sequential dependencies or persistent
exploration [9-11].

Even in tasks that truly do involve a change
in environmental statistics, the assumption
of recurrence of old contexts may not be
accurate, and the same lifelong-learning
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mechanisms that successfully protect old
knowledge for future reuse may prove to
be maladaptive. This is evident in fear-
extinction paradigms, where expectations
of outdated threats may resurface long
after the threat has been removed, reveal-
ing intact associations bound to old latent
causes [3].

Indeed, a number of psychiatric conditions
are thought to involve mismatches between
assumptions about distribution shifts and
reality. For instance, certain forms of anxiety
may reflect oversegmentation of threat
experiences and/or over-enthusiastic pro-
tection of long-outdated threat associa-
tions, making them stubbornly resistant to
updating [12]. A similar overactive protec-
tion of early drug-related associations has
been proposed to underlie addiction phe-
nomenology such as relapse. Conversely,
mechanisms that enable forward or back-
ward transfer by generalizing knowledge
between past and future contexts may
inappropriately generalize negative experi-
ences to neutral situations, giving rise to
the widespread biased evaluations ob-
served in post-traumatic stress disorder
(PTSD) and depression [7,13].

Such dramatic failure modes of powerful
biological learning systems could offer
valuable lessons for the safety analysis of
new artificial systems capable of continual
learning [14], and help anticipate situations
that may lead to maladaptive behaviors
before they occur, diagnose those that
do occur, and perhaps even build in com-
pensatory safety mechanisms to protect
against them. In parallel, lifelong-learning
algorithms could serve as powerful models
of biological systems for the purposes
of computational psychiatry, particularly
for chronic conditions that recur over an

individual’s lifetime and reflect overprotec-
tion of old knowledge or overgeneralization
to new situations.

Looking ahead: a joint investigation
of challenges?

Biological and artificial agents run up
against similar challenges when attempting
to remain adaptive throughout their life-
times in nonstationary environments with
recurring structure. These include the
need to accurately recognize changes
in one’s environment, to quickly update
one’s knowledge when this happens, to
judiciously protect old knowledge while
doing so without running out of capacity,
and to appropriately reuse past learning
to make smart generalizations about the
future. Biological systems seem to be
equipped with a number of inductive
biases that help them solve this problem,
and artificial systems have taken inspira-
tion from these at various levels of granu-
larity to arrive at algorithmic solutions.
Beyond cross-inspiration from each sys-
tem’s successes, studying the inevitable
failure modes of these inductive biases
in both systems offers a fruitful avenue
for potential future collaboration between
the two fields, with mutual benefits: to the
study of biological systems it could offer a
computational understanding of recurrent
maladaptations commonly encountered
in psychiatry, and inspire treatments that
tame these mechanisms, and to the study
of artificial systems it could offer the ability
to anticipate, diagnose, and protect against
maladaptive behaviors in lifelong learning
agents.
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